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Introduction. The family of coordinate parallelepipeds is one of significant 

classes of sets. Therefore it is important to investigate the geometrical mean and 

reduced indexes of such parallelepipeds. 

Statement of the problem.  

Coordinate parallelepiped  A  with length edges ak is the product   A = 

∏ [0, 𝑎𝑘
∞
𝑘=1 ]   and n-dimensional base of A  is the product   𝐴𝑛 = ∏ [0, 𝑎𝑘

𝑛
𝑘=1 ] . 

Geometrical mean index of the n-dimensional set is equal to  √𝑆𝑅/𝑉, where  

V is  the volume, S  is the area of surface and R is the maximum radius of balls 



which are contained in this set [1]. It is known that value of such index belongs to 

(1,√𝑛]. 

Let us denote the geometrical mean index of n-dimensional base of A by 

𝐺𝑛(A). 

Definition 1. The number   𝑔𝑛(A) = 𝐺𝑛(A)/√𝑛  is called the reduced index of 

n-dimensional base of A. 

Definition 2. If for coordinate parallelepiped  A  the exist the limits 

G(A) = lim𝑛 𝐺n(A) ,    g(A) = lim𝑛 𝑔n(A) , 

then  G(A)  is called geometrical mean index of  A,  g(A)  is called reduced 

index of  A  and  A  is called measurable with respect to these indexes. 

Remark 1. From the inequalities   1< 𝐺n(A)  ≤ √𝑛  it follows that  g(A)  

belongs to  [0,1]  and  G(A)  belongs to  [1,∞] .  

Remark 2.  If  g(A)≠ 0 , then  G(A) = ∞ .   

The aim of the paper is investigation of indexes  G  and  g  of infinite-

dimensional coordinate parallelepipeds . 

Results of paper.   

Lemma 1. For n-dimensional base  An  of  A it holds the formula  

Gn
2
( An ) = ( ∑ 𝑎𝑛

𝑘=1 k
-1

 )  min { ak , k=1,2,…,n} . 

For proof it is sufficiently to note that surface of  An is the union of  2n  

hyperfaces with common area   2( ∑ an
k=1 k

-1
) ( ∏ 𝑎𝑛

𝑘=1 k) .  

Theorem 1. If sequence  (an)  of edges of parallelepiped  A  has non-zero 

limit  q  and  m  is infimum of  (an) , then  g(A) = √𝑚/𝑞 . 

Theorem 1 follows from lemma 1, because  lim𝑛( ∑ 𝑎𝑛
𝑘=1 k

-1
) / n  =  1/q . 

Corollary 1.  If the sequence (an) of parallelepiped edges has non-zero limit, 

then g(A)≠ 0,  and for every  p  from ( 0, 1]  the exist parallelepiped  A  with 

condition   lim𝑛 𝑎n≠ 0  such that  g(A)  = p . 

Lemma 2 . Let q> 1  and  A  has edges  an=  q
1-n

, then  G(A)= √
𝑞

𝑞−1
 . 

Lemma 3. If  A  has edges  an=  n
-n

, then  G(A)=  1  and therefore  g(A)=  0. 



Lemma 4.  If  A  has edges  an= (ln(n+1))
-1

 then g(A)= 1  and therefore  

G(A)= ∞. 

Lemmas  2-4  follow from lemma 1. 

Lemma 5. Let  q> 0 and  A  has edges an= n
-q

 , then  g(A) = √
1

𝑞 + 1⁄  . 

Proof.  For such case  gn
2
( An) is equal to integral sum for the ∫ 𝑥

1

0
q
 d x   and  

therefore  gn (A)  has correspondent limit.  

Theorem 2. For every  p  from [0, 1] and every  L  from  [1, ∞]  there exist 

parallelepipeds  A  and  B such that sequences of its edges tend to zero and  g(A)= 

p , G(B)= L . 

Theorem 2 follows from lemmas 2-5. 

Theorem 3. The
 
exist unmeasurable with respect to  G parallelepiped  B  and 

unmeasurable with respect to  g  parallelepiped  A  such that sequences  (bn)  and  

(an)  of its edges tend to zero. 

Proof. 1) Let  b2m-1 = b2m  = 2
1-m

 . Then from lemma 1 it follows 

that lim𝑚 𝐺2m-1  (B)  ≠ lim𝑚 𝐺2m (B). 

2) Let a1 =1, every of 2 next members of sequence (an) is 1/2, every of 4 next 

is  1/4  , every of 8 next is  1/8 , and go on. Then for the cases n= 2
m
 -1  and  n = 2

m
  

correspondent subsequences of gn(A) have different limits. Theorem 3 is proved. 

Theorem 4. 1) If edges  an of parallelepiped  A  tend to zero and for all 

coordinate rearrangements T  it hold equalities  g(TA) = g(A) , then  g(A) = 0. 

 2) If edges  bn  of parallelepiped  B  tend to zero,  G(B) < ∞  and for all 

coordinate rearrangements  T  it hold equalities  G(TB) = G(B), then  G(B) = 1. 

Proof. 

1}  Because of invariance with respect to rearrangements we can assume that 

edges  an  decrease in the wide sense. 

The exists increasing sequence (n(k))  of natural numbers such that fractions  

an(k+1)/an(k)  tend to zero,  n (1) > 1 . 



Let  T  be the coordinate rearrangement such that  T(n(1))) = 1,  T(n(k+1)) = 

1+ n(k)  for all   k  and  T(j) = j+1 for the rest. Then  n(k)-dimensional bases of  A  

and  T(A)  have the same collection of edges ( although in different orders ). 

Therefore  

gn(k)(TA) = gn(k)(A). 

From lemma 1 it follows that  g
2

1+n(k)(TA) = g
2
n(k)(TA)( an(k+1)/an(k)) 

n(k)(1+n(k))
- 1

 + (1 +n(k))
-1

 = g
2
n(k)(A)( an(k+1)/an(k)) n(k)(1 + n(k))

- 1
+ (1 + n(k))

-1
. 

The right part of this equality  tends to zero, the left part tends to 

g
2
(TA)=g

2
(A), therefore  g(A)=0.  

2 ) Under analogical assumptions about edges and rearrangement we obtain 

equality  G
2

1+n(k)(TB)=G
2

n(k)(B)(bn(k+1)/bn(k)) +1. Now the right part tends to 1, 

therefore from condition  G(TB)=G(B) it follows that  G(B)=1. Theorem 4 is 

proved. 

Lemma 6. Let A has edges  a2n-1 = n
-n

, a2n = n
-1

  and rearrangement  T  shifts 

every a2n-1  to right side on the position after a2k  with the condition  k
-1

 < n
-n

. Then  

G(A) =1, g(A) =0, but  Gn (TA)  does not tend to 1  and  gn(TA)  does not tend to 

zero.  

Lemma 6 follows from lemma 1. 

Remark 3. From lemma 6 it follows that theorem 4 gives only necessary 

conditions of invariance of indexes G  and g  with respect to all coordinate 

rearrangements. Sufficient conditions are given by theorem 5.  

Theorem  5. 1)  If edges an  of parallelepiped  A  decrease in the wide sense 

and tend to zero, then from condition  G(A) =1  it follows that  A  is invariant of 

indexes G and g  with respect to all coordinate rearrangements  T. 

2) If edges an  tend to q, where q≠0, then  A  also is invariant of  G  and  g,  

g
2
(A)= inf{an}/q  > 0,  and therefore  G(A) = ∞. 

Proof. 1) Let us denote  M(n) = max{ T(i), i = 1,…, n }. Then from lemma 1 

it follows that  1 < 𝐺2
n(TA) = ( ∑ 𝑎𝑇(𝑘)

−1𝑛
𝑘=1 )𝑎𝑀(𝑛)  ≤ 𝐺𝑀(𝑛)

2  (A). The right part 

tends to  1, therefore  G
2

n(TA)  also tends to  1. Consequently,  G(TA) =1, and 

therefore  g(TA) = 0 = g(A).  



2) For the case  q ≠ 0 formula for  g(A) is given by theorem 1. Right part of 

this formula is invariant, therefore left part also is invariant. Theorem 5 is proved. 

Remark 4. We know (from remark 1) that for every parallelepiped  g(A)≤ 1. 

From  lemma 4 it follows that in the space  c0  there exist coordinate 

parallelepipeds  A  with decreasing edges  an  such that  g(A) = 1. 

Theorem 6. In spaces  𝑙𝑝 (where p > 0) there does not exist  parallelepiped  

A  with decreasing edges  an   and  such that  g(A) = 1.  

Proof.  Let us suppose that  p  is the fixed positive number, parallelepiped  A  

has decreasing edges  an  and  g(A) = 1.  

From evident inequality   
1

2𝑛
 ( ∑ 𝑎𝑘

−12𝑛
𝑘=𝑛+1  ) 𝑎2𝑛 ≤  1 2⁄    and from lemma 1 it 

follows that    𝑔2𝑛
2  ( A) –

1

2
 ≤  𝑔2𝑛 

2 ( A )  − 
1

2𝑛
 ( ∑ 𝑎𝑘

−12𝑛
𝑘=𝑛+1  ) 𝑎2𝑛 =  

1

2𝑛
(∑ 𝑎𝑘

−1𝑛
𝑘=1 )𝑎2𝑛  ≤ 

1

2
 𝑎2𝑛 / 𝑎𝑛 ,    therefore  

( a2n / an )
p
  ≥  ( 2 g

2
2n (A) – 1 )

p
 . 

The right part of last inequality tends to 1, therefore there exists number  n(0)  

such that   a
p

2n / a
p
n >  

1

2
   for all  n ≥ n(0) .  

Then for the numbers   j = 2
k
 n(0)  it hold inequalities   

a
p
2j ≥ 

1

2
 a

p
j  ≥  2

-k-1
 a

p
n(0)  . 

Then for the partial sums of the series 

∑ 𝑎𝑚
𝑝

∞

𝑚=1
 

are true the inequalities  

s2j – sj ≥  j 2
-k-1

 a
p

n(0)  =  
1

2 
 n(0) a

p
n(0)  =  const. 

Therefore this series is divergent. Theorem 6 is proved. 
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