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It are introduced the notions of the geometrical mean and reduced indexes of infinite-
dimensional parallelepiped of coordinates and also it are investigated the properties of these
indexes.
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Introduction. The family of coordinate parallelepipeds is one of significant
classes of sets. Therefore it is important to investigate the geometrical mean and
reduced indexes of such parallelepipeds.

Statement of the problem.

Coordinate parallelepiped A with length edges ay is the product A =

[1%=1[0,a,] and n-dimensional base of A is the product A, =[[;=4[0, ax] .

Geometrical mean index of the n-dimensional set is equal to /SR/V, where

V is the volume, S is the area of surface and R is the maximum radius of balls



which are contained in this set [1]. It is known that value of such index belongs to
(1,vn].

Let us denote the geometrical mean index of n-dimensional base of A by
G,(A).

Definition 1. The number g, (A) = G,,(A)/n is called the reduced index of
n-dimensional base of A.

Definition 2. If for coordinate parallelepiped A the exist the limits

G(A) = lim,, Go(A),  g(A) = lim, gn(A) ,

then G(A) is called geometrical mean index of A, g(A) is called reduced
index of A and A is called measurable with respect to these indexes.

Remark 1. From the inequalities 1< G,(A) < +/n it follows that g(A)
belongs to [0,1] and G(A) belongsto [1,00].

Remark 2. If g(A)# 0, then G(A) = 0.

The aim of the paper is investigation of indexes G and g of infinite-
dimensional coordinate parallelepipeds .

Results of paper.

Lemma 1. For n-dimensional base A, of A it holds the formula

GA(A) = (X0 ) min{a, k=1,2,..n} .

For proof it is sufficiently to note that surface of A, is the union of 2n
hyperfaces with common area 2( ¥2_, a ™) ([1R2, au) -

Theorem 1. If sequence (a,) of edges of parallelepiped A has non-zero
limit g and m is infimum of (a,), then g(A) =/m/q.

Theorem 1 follows from lemma 1, because lim, (¥7_,ac)/n = 1/q.

Corollary 1. If the sequence (a,) of parallelepiped edges has non-zero limit,
then g(A)+ 0, and for every p from (0, 1] the exist parallelepiped A with
condition lim, a,# 0 such that g(A) =p.

Lemma2.Letg>1 and A hasedges a,= q*", then G(A)= fﬁ.

Lemma 3. If A hasedges a,= n", then G(A)= 1 and therefore g(A)= O.



Lemma 4. If A hasedges a,= (In(n+1))™ then g(A)=1 and therefore
G(A)= co.

Lemmas 2-4 follow from lemma 1.

Lemmab5. Let g> 0 and A has edges a,=n™, then g(A) = /1/61 11

Proof. For such case g.2( Ay) is equal to integral sum for the fol x%dx and

therefore g, (A) has correspondent limit.

Theorem 2. For every p from [0, 1] and every L from [1, o] there exist
parallelepipeds A and B such that sequences of its edges tend to zero and g(A)=
p,G(B)=L.

Theorem 2 follows from lemmas 2-5.

Theorem 3. The exist unmeasurable with respect to G parallelepiped B and
unmeasurable with respect to g parallelepiped A such that sequences (b,) and
(an) of its edges tend to zero.

Proof. 1) Let bymi =0y = 21™ Then from lemma 1 it follows
that lim,,, Gomt (B) # lim,, Gon (B).

2) Let a; =1, every of 2 next members of sequence (a,) is 1/2, every of 4 next
is 1/4 , every of 8 next is 1/8, and go on. Then for the cases n=2" -1 and n=2"
correspondent subsequences of g,(A) have different limits. Theorem 3 is proved.

Theorem 4. 1) If edges a, of parallelepiped A tend to zero and for all
coordinate rearrangements T it hold equalities g(TA) =g(A) , then g(A) =0.

2) If edges b, of parallelepiped B tend to zero, G(B) < oo and for all
coordinate rearrangements T it hold equalities G(TB) = G(B), then G(B) = 1.

Proof.

1} Because of invariance with respect to rearrangements we can assume that
edges a, decrease in the wide sense.

The exists increasing sequence (n(k)) of natural numbers such that fractions

anks1)fank tendto zero, n(1) > 1.



Let T be the coordinate rearrangement such that T(n(1))) =1, T(n(k+1)) =
1+ n(k) forall k and T(j) = j+1 for the rest. Then n(k)-dimensional bases of A
and T(A) have the same collection of edges ( although in different orders ).
Therefore

In(TA) = Gn(A).

From lemma 1 it follows that g%1.ngg(TA) = G%nio(TA)( @nger/ango)
n(K)(A+n(K)) ™+ (1 +1(K)) ™ = Pugg(A)( Bnersy/ango) KL +(K)) + (1 + n(K))™.

The right part of this equality tends to zero, the left part tends to
g% (TA)=g*(A), therefore g(A)=0.

2 ) Under analogical assumptions about edges and rearrangement we obtain
equality G%1.ng(TB)=G’ 0 (B)(brs1/Ongo) +1. Now the right part tends to 1,
therefore from condition G(TB)=G(B) it follows that G(B)=1. Theorem 4 is
proved.

Lemma 6. Let A has edges a,,.s =n™, ag, = n' and rearrangement T shifts
every ay,; to right side on the position after a, with the condition k* < n™ Then
G(A) =1, g(A) =0, but G,(TA) does nottendto1l and g,(TA) does not tend to
zero.

Lemma 6 follows from lemma 1.

Remark 3. From lemma 6 it follows that theorem 4 gives only necessary
conditions of invariance of indexes G and g with respect to all coordinate
rearrangements. Sufficient conditions are given by theorem 5.

Theorem 5. 1) If edges a, of parallelepiped A decrease in the wide sense
and tend to zero, then from condition G(A) =1 it follows that A is invariant of
indexes G and g with respect to all coordinate rearrangements T.

2) If edges a, tend to g, where g0, then A also is invariant of G and g,
g*(A)= inf{a,}/q > 0, and therefore G(A) = co.

Proof. 1) Let us denote M(n) = max{ T(i),i=1,...,n }. Then from lemma 1
it follows that 1 < G*,(TA) = (X7r_, a;(lk))aM(n) < G,ﬁ(n) (A). The right part
tends to 1, therefore G?,(TA) also tends to 1. Consequently, G(TA) =1, and
therefore g(TA) =0 =g(A).



2) For the case q # 0 formula for g(A) is given by theorem 1. Right part of
this formula is invariant, therefore left part also is invariant. Theorem 5 is proved.

Remark 4. We know (from remark 1) that for every parallelepiped g(A)<1.
From lemma 4 it follows that in the space c, there exist coordinate
parallelepipeds A with decreasing edges a, such that g(A) = 1.

Theorem 6. In spaces L, (where p > 0) there does not exist parallelepiped

A with decreasing edges a, and such that g(A) = 1.
Proof. Let us suppose that p is the fixed positive number, parallelepiped A

has decreasing edges a, and g(A) =1.

From evident inequality % (X2r . 1a;t) agn < 1/2 and from lemma 1 it

follows that g2, (A) == < g2, (A) — - (Zin41 aic") azn =
%(27;1 a;az, < % a,, ! a, , therefore
(aZn/a-n)p > (2922n(A)_1)p-
The right part of last inequality tends to 1, therefore there exists number n(0)
such that aP,,/a", > % for all n>n(0).
Then for the numbers j = 2n(0) it hold inequalities
apgj 2% apj > 2_k_1 apn(o) .

Then for the partial sums of the series
Lo
m=1
are true the inequalities

. ~-k- 1
S5 =82 j 2" @) = - n(0) @’ = const.
Therefore this series is divergent. Theorem 6 is proved.
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