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І. ПРОБЛЕМИ МЕТОДИКИ НАВЧАННЯ 
МАТЕМАТИЧНИХ ДИСЦИПЛІН 

SOLVING COMPETITIVE PROBLEMS IN THE NUMBER THEORY 
WITH THE VIEW OF IMPROVEMENT OF MATHEMATICAL 

TRAINING OF STUDENTS 
Olga SHULGA, Lyudmila IZIUMCHENKO 
У статті висвітлено аспекти теоретико-числових задач, що сприяють розвитку логічного 

мислення, поглибленню знань з математики і можуть бути використані для підготовки учнів до 
олімпіад та позакласної роботи. 

The aspects of theoretic-numerical problems that contribute to the development of logical thinking, 
deepening knowledge of mathematics and can be used to prepare students for competitions and extracurricular 
activities are examined in this article. 

The problem. The democratization of the educational system of Ukraine requires mathematical 
science to find new methodological technologies that would have provided along with a high level 
of theoretical and practical training in mathematics also refocus of the educational process on the 
student’s personality, favorable conditions for achieving the chosen level of knowledge. In today's 
schools one of the most effective ways to motivate students to study, to the cognitive activity, 
development of their creative abilities, to deepen and broaden students' knowledge are the subject 
school contests that promote the development of skills to solve problems of increased complexity, a 
defense of students’ research works in the SAS (Small Academy of Sciences). The topic of this 
article was chosen due to the fact that the number-theoretic problems are frequently encountered in 
mathematical contests at various levels, entrance exams, but still are difficult for students and 
teachers. 

Analysis of previous research. The structure and content of mathematical study, continuity in 
learning and teaching mathematics and professional orientation investigated M.I. Burda, V.G. Bevz, 
N.A. Tarasenkova, V.O. Shvets, T.M. Hmara, N.M. Voynalovych and others; forming a creative 
individual of the student, development of creative thinking while studing mathematics – 
Z.I. Slyepkan, O.S. Chashechnykova, O.I. Skafa, V.A. Kushnir, R.J. Rizhnyak, L.I. Lutchenko and 
others. Systematic approach to organizing and solving unusual problems investigated 
V.I. Michailovsky, I.M. Mitelman, O.G. Ganyushkin, V.V. Plakhotnik, M.V. Pratsovyty, 
O.M. Vorony, I.V. Fedak, V.M. Radchenko, M.O. Perestyuk, M.S. Dobosevych, V.A. Yasinsky, 
V.N. Nagorny, V.O. Borisova, V.M. Leyfura, V.S. Mazorchuk, V.A. Vyshens'kyi, M.V. Kartashov, 
K.V. Rabets, O.J. Teplinsky, V.V. Nekrashevich, O.O. Kurchenko, N.M. Shunda, G.V. Apostolova 
and others. Research of the theoretic-numeral component in the system of mathematical education 
can be found in the works by V.O. Shvets, V.A. Yasinsky, V.V. Yasinsky, V.V. Plakhotnik and 
others. 

Goals of the article. Level of mathematical schooling of the student is characterized primarily 
by his ability to solve problems. It is no coincidence that the current practice of teaching 
mathematics much of the training time is devoted to solving the problem.  

The primary means of mathematical thinking is solving problems. Obviously, we don’t mean 
training exercises, but the unusual tasks, which solution, as either non-standard solutions of 
traditional problems, as an important component in the development of creative abilities of the 
individual. Problems motivate students to nominate and justificate certain assumptions, construct 
fragmentary theoretical generalizations, contributing in this way the formation of students' creative, 
heuristic thinking and commitment to research. In this regard a significant role in the mathematical 
training of the student is to be given to solving problems. 

The purpose of this article is to enlighten methodical aspects of solution the various types of 
competitive theoretical and numerical problems that are relevant at this time and that can be 
measured in terms of circle work with students of 10.-11. physical and mathematical classes of 
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Pedagogical Lyceum and more than a decade long experience of work with students from the group 
“Mathematics” of Kirovohrad regional office of the Small Academy of Sciences. 

Use of theoretical and numerical problems for improving mathematics scholarship of the 
students. Solving unusual problems in the classroom, circles and other types of extracurricular 
activities allows students to gain experience in comparison, observation, identifying simple 
mathematical regularities, puting forward hypotheses that need to be proofed. Thus, the conditions 
for the development of deductive reasoning arise. In addition, these tasks can help teachers in the 
education of moral personality traits as assiduity, persistence in achieving goals, perseverance, 
diligence and so on. Finally, on efficiency of problems use in teaching mathematics largely depends 
not only the quality of training, education and development of students, but also the level of their 
practical qualification to the future activities in any area of the economy and culture. 

A significant part of theoretical and numerical problems are problems to find a rational 
(integer, positive) solutions of equations and their systems. Diophantine equation is the equation 
with integer coefficients of any number of variables and whatever degree. And there are integer or 
rational solutions, and the number of variables in the Diophantine equation is greater than the 
number of equations. No contest, mathematical competition passes without Diophantine equation or 
problem which leads to solving such equations. In the literature we can find a description of the 
methods of solving Diophantine equations: localization and enumeration methods, graphical 
method, method of factoring and the method of descent. In our opinion, it is also appropriate to use 
the theory of divisibility to solve these equations. 

Let us consider the methodological aspects of the solution of the Diophantine equation using 
method of factorization on these examples. 

Problem #1. Find all solutions of the equation 322  yx . 
Solving.    3 yxyx , and since yx,  are integers, their sum and difference are integers 

either, so we have a set of four systems: 






3
1

yx
yx

, 






1
3

yx
yx

, 






3
1

yx
yx

, 






1
3

yx
yx

. 

There is no other options, because the number 3 is simple. 
Solution: )1;2();1;2();1;2();1;2(  . 
While solving a problem like this for the first time it is advisable to record all the possible 

options and solve them. This helps to accustom students to mathematical tidiness while solving 
problems, precise thinking, to exclude unnecessary haste, etc. However, after having solved enough 
problem this kind it is desirable to investigate the form of equation (symmetry to OOyOx ,, ) and 
then find all solutions of sufficient only for non-negative. Taking into account the ratio between the 
difference and the sum of non-negative integers yxyx  , there is only one option 








3
1

yx
yx

, where we get a couple )1;2( , and then all the solutions differ only by signs. 

Solution: )1;2();1;2(  . 
Conclusions obtained for Problem 1, can be used for the next exercise. 
Problem #2. Find all solutions of the equation 1222  yx . 
Solving. Similar to Problem 1, we will look for solutions in the first quarter. With three 

possibilities for the number 12: 12112  , 6212  , 4312  , we get only one integer solution 

)2;4(  for 







6
2

yx
yx

. 

Solution: )2;4();2;4(   
In our opinion, while the first solution of such problem it is advisable to prescribe all systems 

of the complex and find all solutions (including fractions). But after a while it is worth examining 
why some of the systems could not have integer solutions (as the numbers yxyx  ,  are of 
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equal parity, because their sum is equal to x2 , they can not be one even, and another odd at the 
same time). The work should be carried out with fixing the most troublesome episodes of the 
solution. 

After these considerations it is useful to prove the following statement. 
Problem #3. Prove that the equation has no integer solutions: 6222  yx . 
Proof. The right side is the number is even, and therefore the left is even either, that is why 

some of the factors is divisible by two (theoretical framework: if the product of integers is divisible 
by a prime number, then at least one of the factors is divided by this number). Multipliers of the left 
part are of the same parity, so both are even. Then the left side is divisible by four, and the right 
isn’t. Impossible. 

It is to be mentioned that one and the same themes, that are dealt with in different forms, should 
have different problems complex and sometimes different ways to solve them. 

Problem #4. Find all the pairs of positive integers ),( yx  that satisfy the equation 
yxyx 4822  . 

Solving. Let’s schedule yxyx 4822   for factors: 48)1)(48( 2  yx , and then 
1025)48(,3248 4   , factors of the number 48: }48,24,16,12,8,6,4,3,2,1{ . We have a 

set of 10 systems that allow only two integer solutions )49,7( ; )4,8( . 
Another method for solving Diophantine equations is the method of localization and 

enumeration. However, while solving this equations this way you can use the properties of 
divisibility by 2, 3, 5 and others. 

Problem #5. Find natural solutions to the equation 72832 3  xyx . 

Solving. Since 7282 3 x , then 8,3643  xx , consequently  7,,2,1 x  (localization). 
Since the left side is divisible by x  equal, then if  6,5,3x  the left side is divisible by 3,5,3  
respectively, so the right side isn’t divisible by three or five (therefore, it’s impossible). So only 

 7,4,2,1x  are to take over, and we have the answer );242;1(  );50;4(  )2;7( . 
Need to solve a Diophantine equation erases either while solving systems of Diophantine 

equations. 

Problem #6. To find all the integer solutions to the system:
 





1234

271012
zyx

zyx
. 

Solving. Let’s exclude variable x  from the system of equations, we obtain an equation that 
depends on two variables ),( zy . Let us solve the Diophantine equation relative to zy,  and 
substitute the obtained values in x : 










)3(1234
271012

zyx
zyx










)3(1234
271012

zyx
zyx













4
123

1
zyx

zy
. 

Then 
4

12)1(3  zzx  , 1
4
 zx . Since x  is integer, z must be divisible by 4: 

Zttxtytz  ,1;41;4 . 
Verification: 























11
22

1812344
22840101212

142)41(3)1(4
247)41(10)1(12

ttt
ttt

ttt
ttt

. 

Solution:

 

Zttztytx  ,4,41,1 . 
It is reasonable to accustom children to self-control. In our opinion the solutions to the 

problems in textbooks should not soothe. It is advisable to refer to them (if they are given) only 
after verification. An important means of controlling the accuracy of the results is re-execution 
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problem by another means. 
Problem #7. On the number line all the numbers that when divided by 84 give the remainder 

35 are marked yellow, and blue – all the numbers that when divided by 56 give the remainder 3. 
Find the shortest distance between the yellow and blue dot. 

Solving. We have the numbers 3584 x  and 356 y  where Zyx , . The distance between 

them is 325684)356()3584(  yxyxd . Since Zyx , , the expression 

  4325684  yx , ie 4d . Let’s verify whether a distance can be equal to four. It is enough to 
show that there are solutions of at least one of two equations: 4325684  yx  or 

4325684  yx . The first equation has no solutions: 7
923365684  yxyx . 

The second equation 123285684  yxyx  has integer solutions: 
tytx 32,21  , where Zt . And so the minimum possible distance between these points 

is equal to 4. For example, between blue 115  and yellow dot 119 . 
Much of the theoretical-numeric problems of the contest level are problems in which the 

simplicity of numbers is to explore or all the prime numbers that satisfy certain conditions are to 
find. Unfortunately, the literature doesn’t describe the mechanism of solution, which feature it is 
appropriate to in a particular case and why. We encourage our students to use parity (the only prime 
even number is 2), divisibility by three (explore the remainder of the division by three), divisibility 
by 10 (by which number may a prime number end), and to do it consistently, depending on if results 
are positive or not. 

Problem #8. Find the smallest positive prime number p for which 1132  ppn  is a 
prime. Find all positive primes of this type. 

Solving. Substituting consistently positive primes 3,2  pp we obtain: at 21,2  np  it 
is not a prime, and if 3p  obtain 29n – a prime. Since 

)4(3)1(113 22  ppppn  is divisible by three and isn’t equal to three, therefore it is 
not prime at all primes 3p  (theoretical framework: by the prime 3p   312 p ). 

Solution: when 3p , 29n . 
Problem #9. It is known that the numbers qpqpqqp 5,57,3,,   are positive, prime, 

pairwise distinct integers. Find p  and q . 
Solving. Let’s use divisibility by two. The second and third numbers 3, qq  are prime 

numbers of different parity. And so one of them is equal to two. Since the numbers are positive, 
53,2  qq . The fourth and fifth numbers are primes with the same parity (odd), the result is 

not obtained, let’s proceed to use divisibility by three. The numbers that are left: 
9)1(10),1()96(107,  pppppp  give different remainders when divided by 

three. And so one of the numbers is equal to three according to the condition of primality. By 3p  
the last number isn’t positive; by 3107 p  the number p  is not natural, therefore we have a 
single possibility: 310 p . And then 101107;13  pp  (a prime, because it is not 
divisible by 2, 3, 5, 7). 

Solution: 2,13  qp . 
Problem #10. Find all triples of primes );;( rqp  for which equality 222 rqprqp   is 

true. 
Solving. Use the divisibility by two, can one of the numbers be even? Let us suppose 

that 2p . Then   442 222  rqrqrq . Impossible. Let’s proceed to use 
divisibility by three. We suppose that the numbers rqp ,,  are not divisible by three, then rqp ,,  
have a look )13( k , and then 222 ,, rqp  have the form )3(mod1)13( 2 k ; the left part of the 
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equality is not divisible by three, and the right side when divided by three gives a zero remainder: 
that is divisible by three. Impossible. Therefore, one of the numbers (eg, p ) is divisible by three 

(and is a prime), so 3p . So 3p , then 2293 rqrq  . Let’s suppose that the numbers 

rq,  are not divisible by three, the same: 22 ,rq  have a look )3(mod1)13( 2 k ; but now the 
left part of the equality is divisible by three, and the right side by dividing by three gives the 
remainder two: that is not divisible by three. Impossible. Therefore, one of the numbers (eg, q ) is 
divisible by three, is a prime, so 3q . And then 33  rr . 

Solution: one set  3,3,3 . 
Problem #11. Find all natural values n  for which three numbers ,832  nn  ,34 2  nn  

562  nn  are positive primes. 
Solving. Obviously, the problem cannot be solved by means of localization. Let’s investigate 

the unknown numbers. Since among the primes there is only one even number (number two), and 
all the others are odd, given that the sum of the three numbers 
      1086563483 2222  nnnnnnnn  is an even number, we conclude that 
all of them cannot be odd. Thus, at least one of them is even, and therefore equal to two. If it is the 
first number, we obtain    0522832  nnnn , and then 2n  and the desired 
numbers are 11;17;2  respectively. The second number isn’t equal to two, and if the third number is 
two, then 1n  and the first number is no longer natural. 

Solution: 2n (numbers 11;17;2 ). 
Problem #12. Find all the prime p  that can be represented as 3444  cbap  where 
cba ,,  are some (not necessarily distinct) primes. 
Solving. If all the numbers cba ,,  are odd primes, then the number p  is even (more than 2), so 

is not prime. So some of the numbers cba ,,  is even simple, that is equal to two. Let’s suppose that 
2c . Then 1344  bap . Let’s investigate all the possibilities: ba,  are both even, of 

different parity, both odd: if ba,  are both even (prime), then 2 ba  and 45p  is not a prime; 
if a  and b are of different parity, then the number p  is even greater than two, so not a prime; then 

ba,  are both odd. Let’s use divisibility by two and divisibility by three. All the numbers look like 
36,26,16,6  kkkk . As the number a  and b  are odd, they cannot have the form 

.26,6 kk  So the following possibilities: 36,16  kk . Let’s suppose that 
16,16  mbka . Then )3(mod011113)16()16( 44  mkp  is divisible 

by three or more than three, so is not prime. If one of the numbers, for example a , has the form 
36  ka , then since the number a  is prime 3a , so 944  bp . 

Since the number b  is odd, it may end with the number 1, 3, 5, 7, 9, and then 4b  ends, 
respectively, with 1, 1, 5, 1, 1, and the number 944  bp , respectively, with 5, 5, 9, 5, 5. The 
first two and the last two cases correspond to non-prime p  multiple of five. The middle case shows 
that an odd prime number b  ends with 5, so 719945,5 4  pb . Since 719  is not divisible 

by any prime number 2, 3, 5, 7, 11, 13, 17, 19, 23, that doesn’t exceed 719 , it is prime. Thus, the 
numbers cba ,,  can only be 5,3,2  (any order), and number 719p . 

Solution: 719p . 
Mathematics, being an exact science, can cultivate critical thinking skills since first grade 

education. The school of the second and third stages create special opportunities for this process. 
The basic form of this is the precise fixing of the guidelines, written form of all the calculations and 
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assertions and checking the results. Use of analogies must be justified, we must prove the 
acceptability of this analogy not so much with resemblance as with common causes. It is important 
to bring up the courage to formulate hypotheses. At appropriate stages of the lesson the situation of 
“brainstorming” is desirable. The creative personality doesn’t only prove or refute certain 
statements, but constructs, “guesses” the new ones. 

Conclusions. Ever expanding range of elective classes, opportunity to study in a circle, at the 
extramural physical-mathematical school (ZFMSH), SAS helps student focus on the problems that 
he has chosen for his own research, which will contribute to the full and harmonious development 
of personality. It should be remembered, because today’s students will have to deal with problems 
that are not yet resolved, acquire specialties that do not yet exist, use technologies that have not yet 
been created. 
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ГОТОВНІСТЬ МАЙБУТНІХ ВИКЛАДАЧІВ МАТЕМАТИКИ ДО 
ВИКОРИСТАННЯ ІНФОРМАЦІЙНО-КОМУНІКАЦІЙНИХ 

ТЕХНОЛОГІЙ ЯК СКЛАДОВА ПРОФЕСІЙНОЇ ПІДГОТОВКИ 
Татьяна АПАНОВИЧ 

У статті конкретизовано поняття та структура готовності майбутнього викладача 
математики до застосування ІКТ у професійній діяльності, показані основні напрямки використання 
ІКТ у різних формах організації професійної діяльності викладача математики. 

The concept and structure of the readiness of the perspective teachers of mathematics for using 
information communication technologies in their professional activity are elaborated in the article. The 
mainstreams of information communication technologies use in various forms of organization of professional 
activity of teacher of mathematics are shown. 

Постановка проблеми. Процеси глобалізації та інформатизації суспільства, швидка 
зміна ідей, техніки та інноваційних технологій тягнуть за собою і оновлення професійної 
освіти. У цьому зв'язку важливого значення набувають не тільки міцні фундаментальні 
знання майбутнього фахівця-викладача, але і його здатність оперативно реагувати на запити 
динамічно мінливої дійсності, постійно поповнюючи свій інтелектуальний багаж новою 
інформацією, безперервно займаючись самоосвітою і максимально ефективно 
використовуючи джерела інформації для вирішення освітніх проблем. Якісна підготовка 
висококваліфікованих фахівців, професійний рівень яких відповідав би вимогам 
інформаційного суспільства - одне з головних завдань, які ставить перед вищою школою 
Державна національна програма "Освіта" (Україна XXI століття) [1]. Основні напрямки, 
вимоги до професійної підготовки сучасного викладача висвітлені в Державній програмі 
"Вчитель", Національній доктрині розвитку освіти, Концептуальних основ розвитку 
педагогічної освіти України та її інтеграції в європейський освітній простір. 

Таким чином, cсучасне соціальне замовлення вимагає удосконалення професійної 
підготовки фахівців, які володіють інформаційно-комунікаційними технологіями. Тому, перш 
за все, ІКТ повинні стати невід'ємною частиною професійної підготовки майбутніх 
викладачів математики. 

Аналіз досліджень і публікацій. Проблема впровадження інформаційно-комунікаційних 
технологій у навчальний процес досліджувалась у працях Б. Бєсєдіна, А. Веліховської, 
М. Голованя, Ю. Горошка, М. Жалдака, В. Клочка, Ю. Лотюк, Н. Морзе, С. Ракова, 
Ю. Рамського, В. Розумовського, О. Спиваковського В. Чирко, В. Шавальової та інших 


