УДК 519.1

THE COMPONENT REALIZABILITY OF CUBIC DECOMPOSITIONS OF ORDER 10, THAT HAVE ORDER TYPE 1021

L.P. Petrenjuk, A.J. Petrenjuk

Продовжено дослідження кубічних розкладів порядку 10. Для типу 1021розрізнено реалізовні та нереалізовні компонентні типи. Для кожного реалізовного компонентного типу побудовано реалізуючий розклад.

More than ten years ago there was done the partition of the set of cubic decompositions of the complete graph of order 10 into 14 types [1].Under the type of the cubic decomposition R of the graph K_n we understand the vector $a(R)=(a_4, a_6,...)$, where a_i means the number of components of order i in the decomposition R. The type is an invariant with regard to isomorphism in the set of cubic decompositions of order n. Such types we call the *order* types.

The above mentioned order types for the decompositions of K_{10} are

 $1.0003 \ 2.0130 \ 3.0211 \ 4.0500 \ 5.1021 \ 6.1102 \ 7.1310$

8.2120 9.2201 10.3011 11.3300 12.4110 13.5001 14.6100.

It is proved in [2] that all these order types except for 6100 are realizable. The next step in the solution of the existence problem of the cubic decomposition is the introduction of *component* types. For the decomposition R of order type 1021, the component type has the 'chemical' formula G_iXYK_4 . Here G_i means the canonical form of the eldest component in the decomposition R, and X, Y are the canonical forms of components of order 8. The component types of the other order types are defined in the similar way.

We take the canonical graphs G_i (*i*=1,..., 19) from [3], and the graphs G_{20} , G_{21} have the edge lists

G₂₀: 12 13 14 23 24 34 56 57 58 67 69 7A 89 8A 9A,

G₂₁: 12 13 14 23 24 34 56 59 5A 68 69 6A 78 79 7A.

Further we denote A–E the connected cubic graphs of order 8 as it is shown in Fig.1. We write F instead of $2K_4$.

It is easy to count that the set of cubic decompositions of order 10 with order type 1021 is divided into $21 \cdot (6 + C_7^2) = 567$ different component types. The *deep* existence problem of cubic decompositions of order 10 is that to indicate those component types for which the corresponding decomposition sets are nonempty. The component types that have such a quality we call *realizable*.

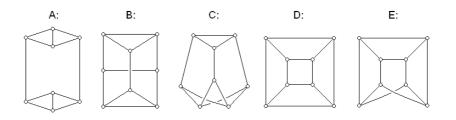


Fig.1. Denotation of the cubic graphs of order 8

The authors have compiled the computer program to compose the cubic decompositions of a given component type. With the help of the program they have obtained the solution for the above formulated problem for order type 1021. The result is in the next theorem.

Theorem. From all the component types for order type 1021 only these are realizable:

 G_1ABK_4 G_1ACK_4 G_1ADK_4 G_1BBK_4 G_1BDK_4 G_1BEK_4 G_1CDK_4 ; G_2AAK_4 G_2ABK_4 G_2BBK_4 G_2CCK_4 G_2DDK_4 ; G₃ABK₄ G₃ACK₄ G₃BBK₄ G₃BCK₄ G₃BDK₄ G₃BEK₄ G_3CCK_4 G_3CDK_4 G_3DEK_4 G_3EEK_4 ; G_4ABK_4 G_4BBK_4 G_4BCK_4 G_4BDK_4 G_4BEK_4 G_4DEK_4 ; G₅ACK₄ G₅AEK₄ G₅BBK₄ G₅BCK₄ G₅BDK₄ G₅BEK₄ G₅CCK₄ G₅CDK₄ G₅CEK₄; G₆AAK₄ G₆ABK₄ G₆ACK₄ G₆ADK₄ G₆AEK₄ G₆BBK₄ G₆BCK₄ G₆BDK₄ G₆BEK₄ G₆BFK₄ G₆CCK₄ G₆CDK₄ G₆CEK₄ G₆EEK₄; G7ABK4 G7ACK4 G7AEK4 G7BBK4 G7BCK4 G7BDK4 G7BEK4 G7CCK4 G₇CDK₄ G₇CEK₄ G₇DDK₄ G₇DEK₄; G₈ABK₄ G₈ACK₄ G₈ADK₄ G₈AEK₄ G₈BBK₄ G₈BCK₄ G₈BDK₄ G₈BEK₄ G₈CCK₄ G₈CEK₄ G₈CFK₄; G₉AAK₄ G₉ABK₄ G₉BBK₄ G₉BCK₄ G₉BEK₄ G₉CDK₄ G₉CEK₄ G₉EEK₄; $G_{10}ABK_4$ $G_{10}BBK_4$ $G_{10}BCK_4$ $G_{10}BEK_4$ $G_{10}CCK_4$; G11ABK4 G11ACK4 G11AEK4 G11BBK4 G11BCK4 G11BDK4 G11BEK4 $G_{11}CDK_4$ $G_{11}CEK_4$ $G_{11}DEK_4$; $G_{12}BBK_4$ $G_{12}BCK_4$ $G_{12}BEK_4$ $G_{12}ACK_4$ $G_{12}CEK_4;$ G13AAK4 G13ABK4 G13ACK4 G13BBK4 G13BCK4 G13BDK4 G13BEK4 $G_{13}CCK_4$ $G_{13}CDK_4$ $G_{13}CEK_4$ $G_{13}ACK_4$ $G_{13}EEK_4$; $G_{14}AAK_4$ $G_{14}ABK_4$ $G_{14}ACK_4$ $G_{14}ADK_4$ $G_{14}BBK_4$ $G_{14}BCK_4$ G₁₄BEK₄ $G_{14}CCK_4$ $G_{14}CEK_4$ $G_{14}DFK_4$; G₁₅ABK₄ G₁₅ACK₄ G₁₅ADK₄ G₁₅AEK₄ G₁₅BBK₄ G₁₅BCK₄ G₁₅BDK₄ $G_{15}BEK_4$ $G_{15}EFK_4$; G₁₆AAK₄ G₁₆ABK₄ G₁₆ACK₄ G₁₆ADK₄ G₁₆AEK₄ G₁₆BBK₄ G₁₆BCK₄ $G_{16}BDK_4$ $G_{16}BEK_4$ $G_{16}BFK_4$ $G_{16}CCK_4$ $G_{16}CDK_4$; G₁₇ABK₄ G₁₇AEK₄ G₁₇BBK₄ G₁₇BCK₄ G₁₇BDK₄ G₁₇BEK₄ G₁₇CCK₄ $G_{17}CEK_4 \ G_{17}EEK_4;$ G₁₈AAK₄ G₁₈ABK₄ G₁₈ADK₄ G₁₈AFK₄ G₁₈BBK₄ G₁₈BCK₄ G₁₈BEK₄ $G_{18}CCK_4 \ G_{18}CEK_4 \ G_{18}DEK_4;$ $G_{19}AAK_4$ $G_{19}BBK_4$; G₂₁CDK₄.

It should be remarked, that there are no cubic decomposition with the eldest component isomorphic to G_{20} .

To confirm the theorem we give the realization for each realizable component type.

The eldest component is $G_1 = 1-234 \ 2-34 \ 3-5 \ 4-5 \ 5-6 \ 6-78 \ 7-9X \ 8-9X \ 9-X$

G1ABK4: 1-579 2-67X 3-69X 5-79 6-X; 1-68X 2-589 4-69X 5-8X 6-9; [3478]; G1ACK4 : 1-59X 2-789 3-78X 5-9X 7-8; 1-678 2-56X 4-78X 5-78 6-X;[2569]; G₁ADK₄ : 1–579 2–57X 3–69X 5–7 6–9X; 1–68X 2–689 4–69X 5–89X;[3478]; G₁BBK₄ : 1–567 2–689 3–789 5–78 6–9; 1–89X 2–57X 4–789 5–9X 7–8;[346X]; G₁BDK₄ : 1–579 3–47X 4–67 5–9X 6–9X; 1–68X 2–69X 3–689 4–89A;[2578]; G₁BEK₄ : 1–79X 2–69X 3–467 4–79 6–X: 1–568 3–89X 4–68X 5–9X 6–9:[2578]: G₁CDK₄ : 1–567 3–479 4–7X 5–9X 6–9X ; 1–89X 2–69X 3–68X 4–689;[2578]; The eldest component is $G_2 = 1-234 \ 2-34 \ 3-5 \ 4-6 \ 5-67 \ 6-8 \ 7-9X \ 8-9X \ 9-X$ G₂AAK₄ : 1–589 2–58X 3–69X 5–8 6–9X; 1– 67X 2–679 4–59X 5–9X 6–7;[3478]; G₂ABK₄ : 1–589 2–68X 3–69X 5–89 6–X; 1–67X 2–579 4–59X 5–X 6–79;[3478]; G₂BBK₄ : 1–568 2–89X 3–69X 5–89 6–X; 1–79X 2–567 4–59X 5–X 6–79;[3478]; G₂CCK₄ : 1–568 2–89X 4–59X 5–8 6–9X; 1–79X 2–567 3–69X 5–9X 6–7;[3478]; G₂DDK₄ : 1–569 2–56X 3–69X 4–59X; 1-78X 2-678 5-89X 6-79X;[3478]; The eldest component $G_3 = 1-234 \ 2-34 \ 3-5 \ 4-6 \ 5-78 \ 6-79 \ 7-X \ 8-9X \ 9-X$ G₃ABK₄: 1–789 2–79X 3–48X 4–8X 7–9;2–568 3–679 4–579 5–9 6–8 7–8; [156X]; G₃ACK₄: 1–59X 2–689 3–68X 5–9X 6–8; 1–678 2–57X 4–58X 5–6 6–X 7–8; [3479]; G₃BBK₄ : 1–567 2–78X 4–58X 5–6 6–X 7–8; 1–89X 2–569 3–68X 5–9X 6–8; [3479]; G₃BCK₄ : 1-567 2-79X 4-59X 5-6 6-X 7-9; 1-89X 2-568 3-69X 5-9X 6-8; [3478]; G₃BDK₄ : 1–569 3–468 4–57 5–9 6–8 7–89; 1–78X 2–7893–79X 4–89X;[256X]; G₃BEK₄ : 1–789 2–689 3–467 4–79 6–8; 2–57X 3–89X 4–58X 5–9 7–89;[156X]; G₃CCK₄ : 1–679 2–789 3–468 4–79 6–8; 1–58X 3–79X 4–58X 5–9 7–89;[256X]; G₃CDK₄ : 1–569 3–467 4–58 5–9 6–8 7–89;1–78X 2–789 3–89X 4–79X;[256X]; G₃DEK₄ : 1–589 2–89X 4–59X 5–6 6–8X; 1–67X 2–567 3–69X 5–9X 7–9;[3478]; G₃EEK₄ : 1–578 2–789 3–489 4–57 5–9; 1–69X 3–67X 4–89X 6–8 7–89;[256X]; The eldest component is G_4 = 1–234 2–34 3–5 4–6 5–78 6–9X 9–X 7–89 8–X G₄ABK₄ : 1–569 2–79X 3–67X 5–69 7–X; 1–78X 2–568 4–57X 5–X 6–78;[3489]; G₄BBK₄ : 1–579 2–69X 3–67X 5–69 7–X; 1–68X 2–578 4–57X 5–X 6–78;[3489]; G₄BCK₄ : 1–578 2–58X 3–67X 5–X 6–78; 1–69X 2–679 4–57X 5–69 7–X;[3489]; G₄BDK₄ :1–569 2–679 3–67X 5–9X 7–X;1–78X 2–58X 4–57X 5–6 6–8 7–X; [3489]; G₄BEK₄ : 1–578 2–568 3–67X 5–X 6–8 7–X; 1–69X 2–79X 4–57X 5–69 6–7;

[3489];

 $\begin{array}{l} G_4 \, DEK_4 &: 1-567 \, 2-56X \, 3-67X \, 4-57X \ ; \ 1-89X \, 2-789 \, 5-69X \, 6-78 \, 7-X; [3489]; \\ The eldest component is \ G_5=1-234 \, 2-34 \, 3-5 \, 4-6 \, 5-78 \, 6-9X \, 7-9X \, 8-9X \\ G_5 ACK_4 &: 1-569 \, \, 2-789 \, 3-678 \, 5-69 \, 7-8; \ 1-78X \, 2-56X \, 4-578 \, 5-X \, 6-78; [349X]; \\ G_5 AEK_4 &: 1-57X \, 2-59X \, 3-479 \, 4-79 \, 5-X; \ 1-689 \, 3-68X \, 4-58X \, 5-69 \, 9-X; [2678]; \\ G_5 BBK_4 &: 1-579 \, 2-689 \, 3-678 \, 5-69 \, 7-8; \ 1-68X \, 2-57X \, 4-578 \, 5-X \, 6-78; [349X]; \\ G_5 BCK_4 &: 1-578 \, 2-568 \, 3-467 \, 4-78 \, 5-6; \ 1-69X \, 2-79X \, 3-89X \, 6-78 \, 7-8; [459X]; \\ \end{array}$

Випуск 66

G₅BDK₄ : 1–57X 2–59X 3–479 4–7X 5–9; 1–689 3–68X 4–89X 5–69X;[2678]; G5BEK4 : 1-57X 2-59X 3-479 -4-7X 5-9; 1-689 3-68X 4-589 5-6X 9-X;[2678]; G₅CCK₄ : 1–689 2–689 3–479 4–78 6–7; 1–57X 2–57X 3–68X 5–6 6–8 7– 8;[459X]; G₅CDK₄ : 1–579 2–57X 3–49X 4–57 9–X; 1–68X 2–689 4–89X 5–69X:[3678]: G₅CEK₄: 1–578 3–789 4–78X 5–9X 9–X; 1–69X 2–59X 3–46X 4–59 5–6;[2678]; The eldest component is G₆: 1–234 2–35 3–6 4–57 5– 8 6–79 7–X 8–9X 9–X G₆AAK₄ : 1–789 2–49X 3–48X 4–X 7–8 7–9; 2–678 3–579 4–689 5–79 6– 8;[156X]; G₆ABK₄ : 1–567 3–489 4–89 5–67 6–8 7–9; 1–89X 2–789 3–57X 5–9X 7-8;[246X]; G₆ACK₄ : 1–567 3–489 4–89 5–67 6–8 7–9; 1–89X 2–789 3–57X 5–9X 7– 8;[246X]; G₆ADK₄ : 1–789 2–48X 3–79X 4–8X 7–9;2–679 3–458 4–69 5–79 6–8 7– 8;[156X]; G₆AEK₄ : 2–48X 3–59X 4–8X 5–79 7–89; 1–789 2–678 3–478 4–69 6– 8;[156X]; G₆BBK₄ : 1–568 2–46X 3–48X 4–8 5–6X; 1–79X 2–789 4–69X 6–8X 7–8;[3579]; G₆BCK₄ :1-567 2-79X 3-59X 5-6 6-X 7-9;1-89X 3-478 4-9X 5-79X 7-8;[2468]; G₆BDK₄ : 2–469 3–458 4–6 5–79 6–8 7–89; 1–789 2–78X 3–79X 4–89X;[156X]; G₆BEK₄ : 1-567 2-789 3-589 5-6 6-8 7-9; 1-89X 3-47X 4-89 5-79X 7-8;[246X]; G₆BFK₄ : 1–789 2–79X 3–48X 4–9X 7–8; 2–468 4–68 6–8 3–579 5–79 7– 9;[156X]; G₆CCK₄ : 1–567 2–789 3–789 5–69 6–8; 1–89X 3–45X 4–89 5–7X 7–89;[246X]; G₆CDK₄ : 1–569 3–457 4–89 5–6 6–8 7–89;1–78X 2–789 3–89X 5–79X;[246X]; G₆CEK₄ :1-567 2-79X 3-79X 5-69 6-X; 1-89X 3-458 4-9X 5-7X 7-89;[2468]; G₆EEK₄ : 1–578 2–789 3–457 4–89 5–9; 1–69X 3–89X 5–67X 6–8 7–89;[246X]; The eldest component is G₇: 1–234 2–35 3–6 4–57 5–8 6–9X 7–89 8–X 9–X G7ABK4 : 1-567 3-49X 4-9X 5-69 6-7 7-X; 1-89X 2-79X 3-578 5-7X 8-9;[2468]; G7ACK4 : 1-569 3-47X 4-9X 5-69 6-7 7-X; 1-78X 2-79X 3-589 5-7X 8-9;[2468]; G7AEK4 : 1-569 2-468 3-489 4-8 5-69; 1-78X 2-79X 4-69X 6-78 8-9; [357X]; G₇BBK₄ : 1–56X 2–49X 4–8X 5–69 6–8 8–9; 1–789 2–467 3–489 4–69 6– 7;[357X]; G₇BCK₄ : 1–569 2–67X 3–79X 5–9X 6–7; 1–78X 3–458 4–6X 5–67 6–8 7– X;[2489]; G₇BDK₄ : 1–578 2–79X 3–89X 5–7X 8–9; 1–69X 3–457 4–9X 5–69 6–7 7– X;[2468]; G₇BEK₄ : 1–568 2–469 3–489 4–8 5–69; 1–79X 2–78X 4–69X 6–78 8–9;[357X]; G7CCK4 : 1-569 2-79X 3-79X 5-6X 6-7; 1-78X 3-458 4-9X 5-79 7-X 8-9;[2468];

G7CDK4 : 1-569 3-479 4-6X 5-9X 6-7 7-X; 1-78X 2-67X 3-58X 5-67 6-
8;[2489];
G ₇ CEK ₄ : 1–569 3–479 4–6X 5–9X 6–7 7–X; 1–78X 2–67X 3–58X 5–67 6–
8;[2489];
G ₇ DDK ₄ : 1–578 3–458 4–6X 5–X 6–78 7–X; 1–69X 2–67X 3–79X 5–679;[2489];
G ₇ DEK ₄ : 1–679 2–67X 3–79X 5–69X; 1–58X 3–458 4–6X 5–7 6–78 7–X;[2489];
The eldest component is G_8 : 1–234 2–35 36 4–57 58 6–9X 7–9X 8–9X
G ₈ ABK ₄ : 1–569 2–678 3–789 5–69 7–8; 1–789 3–45X 4–68 5–7X 6–78 ;[249X];
G ₈ ACK ₄ : 1–567 2–468 3–478 4–8 5–67; 1–89X 2–79X 4–69X 6–78 7–8;[359X];
G ₈ ADK ₄ : 1–59X 2–48X 3–458 4–8 5–9 9–X; 2–679 3–79X 4–69X 5–67X ;[1678];
G ₈ AEK ₄ : 1–579 2–49X 3–47X 4–X 5–79; 1–68X 3–589 4–689 5–6X 6–8;[2678];
G ₈ BBK ₄ : 1–569 2 79X 3–57X 5–6 6–7 9–X; 1–78X 3–489 4–9X 5–79X 7-
8;[359X];
G ₈ BCK ₄ : 1–568 2–467 3–478 4–8 5–67; 1–79X 2–89X 4–69X 6–78 7–8;[3459X];
G ₈ BDK ₄ : 1–569 2–49X 3–45X 4–6 5–6 9–X; 1–78X 3–789 4–89X 5–79X;[2678];
G ₈ BCK ₄ : 1–569 2–479 4–89 5–67 6–8 7–8; 1–78X 2–68X 3–478 4–6X 6–
7;[359X];
G ₈ CCK ₄ : 1–568 2–478 3–478 4–6 5–67; 1–79X 2–69X 4–89X 6–78 7–8;359X];
G ₈ CEK ₄ : 1–59X 2–47X 3–47X 4–9 5–79; 2–689 3–89X 4–68X 5–6 9–X;[1678]:
G ₈ CFK ₄ : 1–89X 2–79X 3–478 4–9X 7 8; 2–468 4–68 6–8 3–59X 5–9X 9–
X;[1567];
The eldest component is G ₉ : 12 13 14 23 25 36 47 48 57 58 69 6A 79 8A 9A
G ₉ ABK ₄ : 1–569 2–678 3–789 5–69 7–8; 1–78X 2–49X 4–69 6–78 7–X 8–
9;[345X];
G ₉ BBK ₄ : 1–567 2–689 3–789 5–69 7–8; 1–89X 2–47X 4–69 6–78 7–X 8–
9;[345X];
G ₉ BCK ₄ : 1–567 2–68X 3–78X 5–6X 7–8; 1–89X 2–479 4–6X 6–78 7–X8–
9;[3459]; G ₉ BEK ₄ : 1-567 2-478 4-69 5-69 7-8 8-9; 1-89X 2-69X 3-789 6-78 7-
X;[345X];
G ₉ CDK ₄ : 1–69X 2 69X 3–789 6–8 7–8X; 1–578 2–478 4–69 5–69 6–7 8–9;[3459];
G ₉ DEK ₄ : 1–59X 2–48X 3–48X 4–5 5–9 8–9; 2–679 3–579 4–69X 5–6X7–
X;[1678];
G ₉ EEK ₄ : 1–59X 2–479 3–579 4–5X 7–X; 2–68X 3–48X 4–69 5 69X 8–9;[1678];
The eldest component is G ₁₀ : 1–234 2–35 3–6 4–78 5–79 6–7X 8–9X 9–X
G ₁₀ ABK ₄ : 1–568 2–679 3–589 5–68 7–9; 1–79X 2–48X 4–69 6–89 7–8X;[345X];
G ₁₀ BBK ₄ : 1–567 2–78X 3–58X 5–6 6–8 7–X;1–89X 3–479 4–5X 5–8X 7–
89;[2469];
G ₁₀ BCK ₄ : 1–2–467 3–59X 4–56 5–X 6–9 7–9X;1–79X 2–89X 3–478 4–9X 7–8;
[1589];
G ₁₀ BEK ₄ : 1–79X 2–459 3–57X 4–59 5–X; 2–68X 3–489 4–6X 6–9 7–89X;[1568];
G ₁₀ CCK ₄ : 1–567 2–789 3–789 5–68 6–9; 1–89X 2–46X 4–69 6–8 7–89X;[345X];
The eldest component is G ₁₁ : 1–234 2–35 3–6 4–78 5– 79 6– 89 7–X 8–X 9–X

G₁₁ABK₄: 1–568 2–479 4–69 5–68 7–89; 1–79X 2–68X 3–789 6–7X 8–9;[345X];

G11ACK4: 1-56X 3-89X 5-6X 6-7 7-89 8-9;1-789 2-789 3-457 4-59 5-8;[246X]; G₁₁AEK₄: 1–568 2–46X 3–48X 4–X 5–68; 1–79X 3–579 4–569 5–X 6–7X;[2789]; G₁₁BBK₄: 1–569 2–789 3–578 5–X 5–6 6–7 8–9; 1–789 3–49X 4–59 5–8X;[246X]; G₁₁BCK₄: 1–567 2 689 3–789 5–68 7–9; 1–89X 2–47X 4–69 6–7X 7–8 8– 9;[345X]; G11BDK4: 1-568 2-46X 3-48X 4-6 5-8X; 1-79X 3-579 4-59X 5-6 6-7X:[2789]: G11BEK4:1-56X 2-47X 3-457 4-X 5-6 6-7;2-689 3-89X 4-569 5-8X 6-X;[1789]; G₁₁CDK₄: 1–68X 2–68X 4–59X 5–8X 6–X; 1–57X 2–47X 3–45X 56 6–7;[3789]; G11CEK4:1-56X 2-47X 3-457 4-6 5-X 6-7;2-689 3-89X 4-59X 5-68 6-X;[1789]; G₁₁DDK₄: 1–57X 2–79X 3–59X 5–8 8–9; 1–79X 3–579 4–569 5–X 6–7X;[456X]; The eldest component is G₁₂ : 1–234 2–35 3–6 4–78 5–9X 6–79 7–8 8–X 9–X G12ACK4:1-568 2-789 3-579 5-6 6-8 7-9;1-79X 3-48X 4-59 5-78 7-X 8-9;[246X]; G12BBK4:1-567 2-789 3-589 5-6 6-8 7-9;1-89X 3-47X 4-59 5-78 7-X 8-9;[246X]; G₁₂BCK₄:1-679 3-478 4-59 5-68 6-87-9;1-58X 2-789 3-59X 5-7 7-X 8-9;[246X]; G₁₂BEK₄:1–58X 3–47X 4–59 5–8 7–9X 8–9;1–679 2–789 3–589 5–67 6–8;[246X]; G12CEK4:1-567 3-478 4-59 5-6 6-8 7-9 8-9;1-89X 2-789 3-59X 5-78 7-X;[246X]; The eldest component is G₁₃: 1–234 2–35 3–6 4–78 5–79 6–8X 7–X 8–9 9–X G13AAK4:1-679 2-46X 3-469 4-X 6-7 7-9;2-789 3-578 4-569 5-6 6-9 7-8;[158X]; G₁₃ABK₄ : 1–568 2–679 3–789 5–68 7–9;1–79X 2–48X 4–69 6–79 7–8 8– X:[345X]: G13ACK4: 1-568 2-479 4-69 5-68 7-89; 1-79X 2-68X 3-789 6-79 8-X; [345X]; G13BBK4: 1-567 2-469 3-479 4-5 5-6 7-9; 1-89X 2-78X 4-69X 6-79 7-8;[358X]; G13BCK4 :1-58X 2-478 3-47X 4-5 5-X 7-8;2-69X 3-589 4-69X 5-68 8-X;[1679]; G₁₃BDK₄ : 1–679 2–468 3–489 4–6 7–89; 2–79X 3–57X 4–59X 5–6 6–79; [158X]; G13BEK4 :1-567 3-478 4-6X 5-6X 7-8 8-X;1-89X 2-48X 3-59X 4-59 5-8;[2679]; G13CCK4: 1-578 2-48X 3-47X 4-5 5-X 8-X; 1-69X 3-589 4-69X 5-68 8-X;[2679]; G₁₃CDK₄ : 1–567 2–479 3–479 4–5 5–6 6–9; 1–89X 2–68X 4–69X 6–7 7– 89;[358X]; G13CEK4 : 1-58X 2-47X 3-47X 4-5 5-8 7-8; 2-689 3-589 4-69X 5-6X 8-X;[1679];

64

G13DDK4: 1-579 3-79X 4-59X 5-8 7-8 8-X; 1-68X 2-48X 3-458 4-6 5-6X;[2679]; G13EEK4 :1-57X 2-48X 3-47X 4-5 5-8 7-8;1-689 3-589 4-69X 5-6X 8-X;[2679]; The eldest component is G₁₄: 1–234 2–56 3–56 4–78 5–9 6–X 7–9X 8–9X G14AAK4 : 1-57X 2-49X 4-69 5-7X 6-79;1-689 3-49X 4-5X 5-68 6-8 9-X:[2378]; G14ABK4: 1-567 2-49X 4-5X 5-7 6-79 9-X; 1-89X 3-49X 4-69 5-68X 6-8;[2378]; G14ACK4: 1-69X 2-78X 5-678 6-9 7-8 9-X;1-578 3-78X 4-56X 5-X 6-78;[2349]; G₁₄ADK₄ : 1–56X 2–38X 3–78 5–6X 6–7 7–8; 1–789 2–479 4–56 5–78 6– 89;[349X]; G₁₄BBK₄ : 1–579 2–478 4–69 5–78 6–89; 1–68X 3–478 4–5X 6–7 7–8;[239X] G₁₄BCK₄ : 1–57X 2–478 4–6X 5–6X 6–8 7–8;1–689 3–478 4–59 5–78 6–79;[239X] G₁₄BEK₄ : 1–57X 2–789 5–6X 6–89 7–89–X;1–689 3–789 4–569 5–78 6–7;[234X] G₁₄CCK₄ : 1–569 2–49X 3–49X 4–6 5–6X; 1 78X 4–59X 5–78 6–789 9–X;[2378] G₁₄CEK₄ : 1–67X 2–347 3–79 4–6X 9–X; 1–589 2–89X 3–48X 4–59 5–X;[5678] G14DFK4 : 1-79X 2-49X 4-56 5-7X 6-79; 1568 3-49X 4-9X 5-68 6-8 9-X;[2378] The eldest component is G₁₅: 1–234 2–56–3–57 4–68 5–9–6–X 7–89 8–X 9–X G₁₅ABK₄: 1–568 2–489 3–469 4–9 5–68; 1–79X 2–38X 3–8X 6–789 8–9;[457X] G15ACK4: 1-568 2-348 3-49 4-9 5-68 6-9; 1-79X 2-79X 3-68X 6-78 8-9;[457X]; G₁₅ADK₄: 1–568 2–349 3–46 4–9 5–68 8–9; 1–79X 2–78X 3–89X 6–789;[457X]; G₁₅AFK₄: 1–567 2–47X 3–46X 4–X 5–67; 1–89X 4–579 5–8X 6–789 7–X;[2389]; G₁₅BBK₄: 1–569 2–489 3–468 4–9 5–68; 1–78X 2–37X 3–9X 6–789 8–9;[457X] G15BCK4: 1-569 2-49X 4-79 5-6X 6-7 7-X;1-78X 2-378 3-4X 4-5X 5-78;[3689]; G₁₅BDK₄: 1–567 2–47X 3–46X 4–5 5–6 –7–X; 1–89X 4–79X 5–78X 6–789;[2389] G₁₅BEK₄: 1–567 2–47X 3–46X 4–7 5–6X; 1–89X 4–59X 5–6X 6–79 7–X;[2389] G15EFK4: 1-57X 2-78X 3-68X 5-68 6-7; 1-689 4-57X 5-7X 6-89 7-X 8-9;[2349] The eldest component is G₁₆: 1–234 2–56 3–57 4–68 5–9 6–X 7–8X 8–9 9–X G₁₆AAK₄: 1–57X 3–469 4–9X 5–7X 6–79; 1–689 2–479 4–57 5–68 6–8 7– 9;[238X] G₁₆ABK₄: 1–567 2–479 3–469 4–9–5–67; 1–89X 4–57X 5–8X 6–789 7–9; [238X] G₁₆ACK₄: 1–56X 2–479 4–7X 5–6X 6–9 7–9; 1–789 3–469 4–59 5–78 6–78;[238X] G₁₆ADK₄: 1–58X 4–79X 5–8X 6–789 7–9; 1–679 2–479 3–469 4–5 5–67;[238X] G₁₆AEK₄: 1–57X 3–689 5–7X 6–89 7–9 8–X; 1–689 2–789 4–579 5–68 6–7;[234X] G₁₆BBK₄: 1–567 2–789 3–689 5–68 7–9; 1–89X 4–579 5–7X 6–789 8–X;[234X] G₁₆BCK₄: 1–57X 2–789 5–6X 6–89 7–9 8–X; 1–689 3–689 4–579 5–78 6–7;[234X] G₁₆BDK₄: 1–567 2–479 3–469 4–5 5–6 7–9; 1–89X 4–79X 5–78X 6–789;[238X]

Випуск 66

G16BEK4: 1-789 3-68X 5-67X 6-9 7-9 8-X; 1-56X 2-78X 4-57X 5-8 6-78;[2349] G₁₆BFK₄: 1–79X 3–469 4–5X 5–7X 6–79; 1–568 2–479 4–79 5–68 6–8 7–9;[238X] G₁₆CCK₄: 1–589 3–469 4–57 5–8 6–78 7–9; 1–67X 2–479 4–9X 5–67X 6–9;[238X] G₁₆CDK₄: 2-478 3-89X 4-59 5-7X 7-9 8-X; 1 79X 2-39X 3-46 4-7X 6-79;[1568] The eldest component is G₁₇ : 1–234 2–56 3–57 4–68 5–9 6–X 7–9X 8–9X G₁₇ABK₄: 1–56X 2–378 3–8X 5–6X 6–7 7–8; 1–789 3–469 4–57 5–78 6–89;[249X] G₁₇AEK₄: 1–56X 2–478 4–7X 5–6X 6–8 7–8; 1–789 3–468 4–59 5–78 6–79;[239X] G₁₇BBK₄: 1–567 2–478 3–468 4–7 5–68; 1–89X 4–59X 5–7X 6–789 7–8;[239X] G17BCK4: 1-567 2-78X 3-68X 5-7X 6-8; 1-89X 4-57X 5-68 6-79 7-8 9-X;[2349] G₁₇BDK₄: 1–567 2–478 3–468 4–5 5–6 7–8; 1–89X 4–79X 5–78X 6–789;[239X] G₁₇BEK₄: 1–567 2–478 3–468 4–5 5–7 6–8; 1–89X 4–79X 5–68X 6–79 7–8; [239X] G₁₇CCK₄: 1–56X 2–37X 3–68 5–8X 6–7 7–8; 1–789 2–489 4–57 5–67 6–89; [349X] G₁₇CEK₄: 1–568 2–378 3–46 4 57 5–8 6–7; 1–79X 3–89X 5–67X 6–89 7–8; [249X] G₁₇EEK₄: 1–579 2–489 4–57 5–6 6–89 7–8; 1–68X 2–37X 3–68 5–78X 6–7;[349X] The eldest component is G₁₈ :1-234 2-56 3-57 4-89 5-8 6-9X 7-9X 8-X G₁₈AAK₄:1-567 2-47X 3-46X 4-X 5-67;1-89X 4-567 5-9X 6-78 7-8 9-X; [2389] G₁₈ABK₄:1–569 2–478 4–67 5–69 7–8; 1–78X 3–468 4–5X 5–7X 6–78; [239X] G₁₈ADK₄:1–59X 4–67X 5–9X 6–78 7–8 8–9; 1–678 2–478 3–468 4–5 5–67; [239X] G₁₈AFK₄:1-678 2-47X 3-46X 4-X 6-8 7-8;2-389 3-89 4-567 5-67 6-7 8-9; [159X] G₁₈BBK₄: 1–567 2–478 3–468 4–5 5–6 7–8; 1–89X 4–67X 5–79X 6–78 8–9; [239X] G₁₈BCK₄:1–569 3–469 4–67 5–79 7–8 8–9; 1–78X 2–478 4–5X 5–X 6–578;[239X] G₁₈BEK₄:1–59X 2–48X 3–489 4–5 5–X 8–9; 2–379 3–6X 4–67X 5–679 9–X; [1678] G₁₈CCK₄:1–59X 2–48X 3–48X 4–5 5–9 8–9; 2–379 3–69 4–67X 5–67X 9–X; [1678] G₁₈CEK₄:1-569 3-468 4-57 5-9 6-7 7-8 8-9; 1-78X 2-478 4-6X 5-67X 6-8; [239X] G₁₈DEK₄:1-69X 4-67X 5-79X 6-8 7-8 8-9; 1-578 2-478 3-468 45 5-6 6-7; [239X] The eldest component is G₁₉: 1–234 2–56 3–78 4–9X 5–7X 6–89 7–9 8–X G₁₉AAK₄: 1–568 2–39X 3–6X 5–68 8–9 9–X; 1–79X 3–459 4–56 5–9 6–7X 7–X; [2478] G₁₉BBK₄: 1–568 2–789 5–89 6–7X 7–X 9–X; 1–79X 2–34X 3–9X 4–78 7–8 8–9; [3456]

The eldest component is G₂₁ : 1–234 2–34 3–4 5–89X 6–89X 7–89X

Випуск 66

G₂₁CDK₄:1–589 2–689 3–789 5–67 6–7; 1–67X 2–57X 3–56X 4–567; [489X] Conclusions and perspectives

The order types 0003 and 0050 were completely investigated in [4, 5]. In [6] we had recently solved the enumeration problem for order types 3011, 4110, 5001. The deep existence problem in the cases of order types 1102 and 0211 is solved in [7, 8].

The possible continuation of the work is the investigation of the cubic decompositions of the graphs K_{13} , K_{16} etc. We can point out the papers [8, 9] which have begun to elaborate the direction. The other direction in developing the topic is to investigate the decompositions of complete graphs into regular graphs of degree k>3. Finally, one may examine cubic decompositions of arbitrary regular graphs.

REFERENCES

- 1. A.J. Petrenjuk, On the enumeration of cubic decompositions of the complete graph K(10) (Ukrainian). The Fifth International conference named after Academician M. Kravtchuk, Report Theses, Kyiv, 1996, p.332.
- L.P. Petrenjuk, A.J. Petrenjuk, The realizability of types of cubic decompositions of the graph K₁₀ (Ukrainian). The Third International Science and Practical Conference 'Mathematical and Programming Maintenance of Intellectual Systems (MPZIS–2005)'. November 16–18, 2005, Report Theses, Dnipropetrovs'k, 2005, 139–140.
- 3. A.M.Barajev, I.A.Faradjev, The construction and the computer investigation of regular and regular bipartite graphs (Russian). In: 'Algorithmic Investigations in Combinatorics', Moscow, 1978.
- 4. A.J.Petrenjuk, Enumerating decompositions of K(10) into isomorphic cubic factors. In: 'Svitogl'ad', vyp.2, Kirovograd, 1996, 52–60.
- 5. L.P. Petrenjuk, A.J. Petrenjuk, On the enumeration of non-isomorphic decompositions of the graph K(10) into cubic factors (Russian), The State Flight Academy of Ukraine, Kirovograd, 1996, 69 pp., Dep. to the State Scientific Library of Ukraine, October 24, 1996, № 2125–Uk96.
- L.P. Petrenjuk, A.J. Petrenjuk, The existence of certain types of cubic decompositions of the graph K₁₀ (Ukrainian). The Materials of the First Inter-High-Schools Seminar "Combinatorial Configurations and Their Applications", Kirovograd, April 19–20, 2006, 39–40.
- L.P. Petrenjuk, A.J. Petrenjuk, The existence of cubic decompositions of order 10 (type 1102), The Materials of the Ninth International Science and Practice Conference "Science and Education '2006", vol. 13, Physics and Mathematics. Dnipropetrovs'k, Science and Education, 2006, 64–68.
- 8. 8. L.P. Petrenjuk, A.J. Petrenjuk, On the existence of cubic decompositions of the graph K₁₀ with the type 2011 (Ukrainian). Scientific Notes, vyp.65, Mathematical Sciences. Kirovograd State Pedagogical University, 2006, 85–94.
- D.A. Petrenjuk, The census of possible types of cubic decompositions of K₁₃ (Ukrainian). The Third International Science and Practical Conference 'Mathematical and Programming Maintenance of Intellectual Systems (MPZIS–2005)'. November 16–18, 2005, Report Theses, Dnipropetrovs'k, 2005, 137–138.
- D.A. Petrenjuk. On the cubic decompositions of the graph K₁₃. The Materials of the First Inter-High-Schools Seminar "Combinatorial Configurations and Their Applications". Kirovograd, April 19–20, 2006, 41–42.