YDX 519.1

О ДЕЛИМОСТИ ПОЛИНОМИАЛЬНЫХ КОЭФФИЦИЕНТОВ НА ПРОСТОЕ ЧИСЛО

Ю.И. ВОЛКОВ, Н.М. ВОЙНАЛОВИЧ

Ми отримали вираз для числа поліноміальних коефіцієнтів, які не діляться на просте число p, в розкладі $(a_1+a_2+\ldots+a_m)^n$.

We obtain an expression for the number of multinomial coefficients which are not divisible by a prime p in the expansion $(a_1+a_2+...+a_m)^n$.

Введение

В 1958 году в журнале American Mathematical Monthly появилась задача (Problem E1288): доказать, что количество нечетных биномиальных коэффициентов в каком-нибудь конечном биномиальном разложении есть степень двойки.

Тогда же появилась и более общая задача (Problem 4723): заданы натуральное число n и простое число p, получить выражение для количества биномиальных коэффициентов, которые не делятся на p. Решение оказалось таким: запишем число n в системе счисления с основанием p, пусть $\{n_i\}$ цифры в полученной записи. Тогда количество биномиальных коэффициентов, которые не делятся на p, задается формулой $\prod (n_i+1)$. (см. [1], p.424).

Целью настоящей статьи является получение для полиномиальных коэффициентов аналога упомянутого решения.

Основной результат

Теорема. Пусть p простое число, $n = (\overline{n_r n_{r-1} \cdots n_0})_p = n_0 + n_1 p + \cdots + n_r p^r$. Тогда количество полиномиальных коэффициентов в разложении

 $(a_1 + a_2 + \dots + a_m)^n, m \ge 2$, которые не делятся на p, задается формулой

$$\binom{n_0+m-1}{n_0}\cdot \binom{n_1+m-1}{n_1}\cdot \cdots \cdot \binom{n_r+m-1}{n_r}$$
.

Доказательство. Сначала убедимся в том, что

$$(a_1 + a_2 + \dots + a_m)^p \equiv (a_1^p + a_2^p + \dots + a_m^p) \pmod{p}.$$
 (1)

Действительно, поскольку

$$(a_1 + a_2 + \dots + a_m)^p \equiv \sum_{\substack{k_1 + \dots + k_m = p \\ k_1 \ge 0, \dots, k_m \ge 0}} \frac{p!}{k_1! \cdots k_m!} a_1^{k_1} \cdots a_m^{k_m} ,$$

то только m коэффициентов, определяемых решениями уравнения $k_1 + \cdots + k_m = p$, $(p,0,\ldots,0)$, $(0,p,0,\ldots,0)$, $(0,\ldots,0,p)$, не делятся на p, а это влечет соотношение (1).

Пусть теперь $q = p^s$, $s \in N$. Тогда

$$(a_1 + a_2 + \dots + a_m)^q \equiv (a_1^q + a_2^q + \dots + a_m^q) \pmod{p} . \tag{2}$$

Для s=1 соотношение (2) доказано. Предположим, что (2) имеет место. Докажем, что (2) будет иметь место и для показателя s+1.

Имеем, поскольку $p^{s+1} = qp$,

$$(a_1+a_2+\cdots+a_m)^{qp}=((a_1+a_2+\cdots+a_m)^q)^p\equiv (a_1^q+a_2^q+\cdots+a_m^q)^p \pmod p$$
, отсюда, в силу (1),

$$(a_1^q + a_2^q + \dots + a_m^q)^p \equiv (a_1^{qp} + a_2^{qp} + \dots + a_m^{qp}) \pmod{p},$$

а отсюда

$$(a_1 + a_2 + \dots + a_m)^{qp} \equiv (a_1^{qp} + a_2^{qp} + \dots + a_m^{qp}) \pmod{p},$$

что доказывает правильность соотношения (2).

Дальше получим:

$$(a_1 + a_2 + \dots + a_m)^n = (a_1 + a_2 + \dots + a_m)^{n_0 + n_1 p + \dots + n_r p^r} \equiv (a_1^{p^r} + \dots + a_m^{p^r})^{n_r} \dots (a_1^p + \dots + a_m^p)^{n_1} (a_1 + a_2 + \dots + a_m)^{n_0}$$

$$(3)$$

Если множители в (3) разложить по полиномиальной формуле, то получим r+1 множитель, каждый из них состоит из $\binom{n_i+m-1}{n_i}$,

 $i=0,1,\dots,r$, слагаемых. Раскрывая дальше скобки, получим выражение в котором будет $\prod_{i=0}^{r} \binom{n_i+m-1}{n_i}$ слагаемых, которые не делятся на p.

Следствия.

Следствие 1. Если p=2, то n_i это нули или единицы, поэтому

 $\prod_{i=0}^{r} \binom{n_i + m - 1}{n_i} = m^j$, где j количество единиц в двоичном разложении числа n, то есть, m^j это количество нечетных коэффициентов в разложении $(a_1 + a_2 + \dots + a_m)^n$. В частности, если m=2, то получим решение упомянутой во введении первой задачи.

Следствие 2. Пусть $p \ge 3, m = 2$. Тогда количество биномиальных коэф-фициентов, которые не делятся на p, задается формулой: $(n_0 + 1) \cdots (n_r + 1)$, то есть, получаем решение упомянутой во введении второй задачи.

Следовательно, количество полиномиальных коэффициентов в разложении $(a_1+a_2+\dots+a_m)^n$, которые не делятся на p, задается формулой $\begin{bmatrix} p+m-2 \\ p-1 \end{bmatrix}^r = \begin{bmatrix} p+m-2 \\ m-1 \end{bmatrix}^r$. В частности, если p=2, m=2, то в разложении бинома $(a_1+a_2)^{2^r-1}$ все коэффициенты будут нечетными.

Следствие 4. Если m>2, r>1, то в разложении $(a_1+a_2+\cdots+a_m)^{p^r-1}$ по крайней мере один полиномиальный коэффициент делится на p.

Это следствие вытекает из неравенства

$$\left[\binom{p+m-1}{m} \right]^r < \binom{p^r+m-1}{m}, p \ge 2, r \ge 2, m \ge 2.$$
(4)

Докажем неравенство (4).

Используя формулу для вычисления биномиальных коэффициентов, перепишем (4) в такой равносильной форме:

$$(m!)^{r-1}(p^r+1)\cdots(p^r+m-1) > (p+1)^r\cdots(p+m-1)^r \Leftrightarrow$$

$$2^{r-1}(p^r+1)\cdots m^{r-1}(p^r+m-1) > (p+1)^r\cdots(p+m-1)^r$$
(5)

Неравенство (5) является следствием неравенства

$$k^{r-1}(p^r + k - 1) > (p + k - 1)^r, p \ge 2, r \ge 2, k \ge 2.$$
 (6)

Это неравенство доказывается индукцией по r. Если r=2, то

$$k(p^2+k-1)-(p+k-1)^2=(k-1)(p-1)^2>0.$$

Предположим, что имеет место (6). Докажем, что

$$k^r(p^{r+1}+k-1) > (p+k-1)^{r+1}$$
. В самом деле,
$$k^r(p^{r+1}+k-1) = k^{r-1}(p^r+k-1) + [k^r(p^{r+1}+k-1)-k^{r-1}(p^r+k-1)] = k^{r-1}(p^r+k-1) + k^{r-1}(p^r+k-1)(p+k-2) + k^{r-1}((k-1)(p-1)(p^r-1) - (k-1)(p-1)) = k^{r-1}(p^r+k-1) + k^{r-1}(p^r+k-1)(p+k-2) + k^{r-1}(k-1)(p-1)(p^r-2) > k^{r-1}(p^r+k-1) + k^{r-1}(p^r+k-1)(p+k-2) > (p+k-1)^{r+1}.$$

ССЫЛКИ

[1] The William Lowell Putnam Mathematical Competition Problems and Solutions, 1938-1964. *The Mathematical Association of America*, 1985.

YDK 532.59

ЕНЕРГІЯ ХВИЛЬОВОГО РУХУ В ДВОШАРОВІЙ РІДИНІ З ВІЛЬНОЮ ПОВЕРХНЕЮ

О.В. АВРАМЕНКО, В.В. НАРАДОВИЙ

Рассмотрена новая задача об исследовании волновых движений в двухслойной жидкости конечной глубины со свободной поверхностью. Выполнена оценка энергии волнового движения в зависимости от геометрических параметров